
Message Broker Systems – Monitoring &
Auditing

Dave Gorman (dave_gorman@uk.ibm.com)
IBM

2nd August 2010

2

Agenda

• What is business application monitoring

• History of monitoring support in WMB

• Configuring using the toolkit

• Configuring using the command line

3

What is Business Activity Monitoring?

• Wikipedia:

• “the aggregation, analysis, and presentation of real time

information about activities inside organizations and
involving customers and partners “

• BAM is an enterprise solution primarily intended to provide

a real-time summary of business activities to operations

managers and upper management.

• A way of making the business more transparent

• Allows evidence-based decision making

• “X-Ray for business processes”

4

Business Activity Monitoring

• Why?

• Decision-makers need Key Performance Indicators (KPIs)

• Where?

• Best source of KPIs are the applications which run the

business

• The ESB has visibility of all of those applications

• How?

• One way is to configure the ESB to produce monitoring

events

• Send the monitoring events to a monitoring application for
analysis/display

5

Typical BAM scenario with Message Broker

CEI

Repository

CEI

Repository

WebSphere

Business

Monitor

WebSphere

Business

Monitor

Message

Driven

Bean

Message

Driven

Bean

WebSphere Application Server

MQ Pub/Sub topicMQ Pub/Sub topic

Monitor Model

Application

6

Notes

• The message-driven bean is hosted within WAS.

• So the WAS instance must have an MQ queue manager

• WebSphere Business Monitor can only receive events

from the CEI component.

• it would be difficult for WebSphere Message Broker to

submit events directly to CEI

• Better to publish in a flexible XML format and allow the

MDB to make good for CEI/WBM if required.

• Picture at upper right is displaying Key Performance

Indicators

• ‘Business dashboard’

7

Typical BAM scenario details

• Events are published to an MQ topic

• To allow multiple subscribers

• To allow each subscriber to choose the level of granularity
• Domain / Broker / Execution group / Message flow

• Event format is XML (published schema)

• Designed to be compatible with CBE

• Allows message broker to integrate with other monitoring
applications

• Allows entire message to be captured and logged to a
database for audit purposes

• Events can be forwarded to WebSphere Business Monitor

• Message driven bean provided with the monitoring sample

• Fully supported offering

• Wraps the WMB event in a CBE wrapper and submits to
CEI

8

Monitoring support in v6.0 and earlier releases

• SupportPac IA9V

• Subflow inserted into message flow to emit CBE event

• Not a supported offering

• Configured via XML files

• WBMTM

• An IBM Services custom solution

• Message capture/repair/replay facilities

• Custom event repository

• Custom user interface

• Custom message flow logic

• Very flexible, but very costly in development effort

9

Notes

• IA9V

• Payload data used ‘extended data elements’ feature of

CBE

• Not very good at dealing with complex payload data

• WBM Transaction Monitor

• Aimed at transaction monitoring rather than BAM.

• Customized for each customer/site.

• Only one team of practitioners who know how to do this, so
only available to a few large customers

• Custom message flow logic

• Monitoring events are just XML messages…

• …and broker is very good at XML messages

• but much better to have a properly integrated offering.

10

Monitoring support in v6.1.0.2

• Monitoring events from message flows

• Any input node can optionally emit transactionStart,
transactionEnd and transactionRollback events.

• But only on input nodes
• Events can contain simple fields from input message payload
• Not possible to capture “output” data from the flow

• Configuration

• Only via the command line
• A ‘monitoring profile’ held in a configurable service
• Monitoring profile is an XML file which conforms to a

published schema

• All input nodes share the same monitoring profile

• New commands mqsichangeflowmonitoring and
mqsireportflowmonitoring.

11

Notes

• Transaction events

• ‘Rollback’ is only issued if the catch/failure terminals are not

wired up on the input node

• So should not be integral to a properly-designed monitoring
solution

• Configuration

• This slide is setting up the story for v6.1.0.3, where

configuration is much more powerful, and these v6.1.0.2
command-line facilities are upgraded to become a

complete alternative to the toolkit facilities.

12

Monitoring Information

• Monitoring Events from message flows

• Any input node can optionally emit transactionStart,
transactionEnd and transactionRollback events.

• Any terminal can emit an event as the message passes
through

• All events are optional, and fully configurable

• Events can contain simple or complex data from message
payload

• Configuration

• Via the message flow editor
• Excellent support in message flow editor via new Monitoring

page on all nodes.

• Via the command line
• Monitoring profile upgraded to support the new facilities
• mqsichangeflowmonitoring and
mqsireportflowmonitoring updated to support the new
facilities

13

Notes

• Terminal events

• Event is only emitted if the message passes through the

terminal in a forward direction

• Events for error conditions should be configured on the

nodes attached to the failure/catch terminals of the input
node(s)

• Configuration

• Purposely designed to be administered without the toolkit

• So command-line / monitoring profile can do anything that the
toolkit can do

• …and toolkit config can be exported as monitoring profile to
ease the transition (see later slide re:
mqsireportflowmonitoring)

14
Note: terminals are coloured ‘red’ on this slide to highlight those terminals with monitoring events defined.

Monitoring support

15

Notes

• Note the Monitoring page in the Properties view

• The canvas of the message flow has been clicked, so it is
displaying configured event sources for the message flow

• not all event sources

• Clicking an individual node would show event sources for that
node

• How many potential event sources are there in this flow?

• 15 (3 terminal events on each node + the 3 transaction events
on the input node)

• Highlight the Event Source Address column

• ESA is used to address an event source from the command
line, or from a monitoring profile. It will be unique within a
message flow, provided that the flow does not contain duplicate
node names.

• Terminals highlighted in red have events

• Not displayed like this in the editor!

16

Monitoring support 2

These event sources are

internal to the input node –
not located on a terminal

Note: terminals are coloured ‘red’ on this slide to highlight those terminals with monitoring events defined.

17

Monitoring support 3

Note: terminals are coloured ‘red’ on this slide to highlight those terminals with monitoring events defined.

18

Monitoring support 4

Note: terminals are coloured ‘red’ on this slide to highlight those terminals with monitoring events defined.

19

Monitoring event format details

EventData

MessageFlowData

SimpleContent

ComplexContent

EventIdentity

EventSequence

EventCorrelation

broker

executionGroup

messageFlow

node

EventPointData

ApplicationData

BitstreamData
Encoding

Bitstream

localTransactionId
parentTransactionId
globalTransactionId

creationTime

counter

eventName

brokerName / uuid

executionGroupName /

uuid

flowName / uuid

nodeName

terminalName

name
value

dataType

name

20

Notes

• EventPointData/EventData

• Provides the 3 main items of data for a monitoring application
• Identity, Correlation, Sequence

• EventPointData/MessageFlowData

• Should be self-explanatory – no surprises here

• ApplicationData

• Can come from message headers or body

• Automatically included as XML, even if source message was non-
XML

• If the XPath/ESQL returned a simple element, it is placed in
simpleContent, else it goes into complexContent

• simpleContent was the only available option in v6.1.0.2

• BitstreamData

• More details in later slides

21

Monitoring event format : after Message
Driven Bean

extendedDataElements

Encoding

EventData

MessageFlowData

SimpleContent

ComplexContent

EventIdentity

EventSequence

EventCorrelation

broker

executionGroup

messageFlow

node

EventPointData

ApplicationData

BitstreamData
Bitstream

localTransactionId
parentTransactionId
globalTransactionId

creationTime

eventName

brokerName / uuid

executionGroupName / uuid

flowName / uuid

nodeName

terminalName

name
value
dataType

name

CommonBaseEvent

reporterComponentId

msgDataElement

xs:any

creationTime

sourceComponentId

situation

contextDataElements

22

Notes

• MDB is wrapping the WMB monitoring event in a CBE
envelope

• Fields in the CBE should be familiar to some in the

audience

• Note that the WMB data goes into the xs:any slot in the

CBE

• Most fields in the CBE wrapper are simply left at their

default values
• Including @cbe:severity/@cbe:priority

• This is now the recommended way to construct a CBE

which contains complex application data

• Because extendedDataElements is poor at carrying complex
subtrees

23

Monitoring events from message broker

• Good interoperability with WebSphere Business Monitor

• Identity, correlation and sequencing of events is explicitly

built into the event format

• Flexibility

• Events can be consumed by one or more clients
subscribing to the appropriate topic. Topic can include

wildcards, allowing the scope of the subscription to vary
$SYS/Broker/<brokerName>/Monitoring/<executionGroupName>/<flowName>

• Events are emitted in a published (documented) XML

format (schema provided), MDB supplied with the product

submits events to CEI

24

Monitoring events : features

• Unique default event name is automatically assigned

• Can be overridden with a fixed value

• Can be read from message payload

• Sequence field is automatically populated

• Creation time of event

• Auto incrementing counter

• Start at 1 for the first event issued

• Increment by 1 on each subsequent event emitted

• Reset to 1 at the start of the next message

• Correlator field in event is automatically populated

• Same for all events from one invocation of a flow

• Many more options (details later)

25

Configuring: Adding an event to a node

Select the event source.

Input nodes include the
special ‘transaction’ event

sources

26

Configuring: Customizing an event

The event name can be a literal
value, or can be extracted from the

message payload using an

expression

27

Configuring: Adding a filter to an event

XPATH expression to indicate if

this event should be emitted or not

28

Configuring: Adding a filter to an event
(2)

• Expression evaluates to

• True – event emitted

• False – event not emitted

• Evaluated at runtime

• Set on event source definition

• Expression can reference fields from anywhere in the

message assembly

• XPath expression builder support available

• Event filter appears on Monitoring summary table

29

Notes:

• Event Filter section in the Monitoring tab (V7 onwards)

• Enables user to filter out events which do not match a
business rule. So events can be filtered at Message
Broker rather than emitting to Business Monitor and
filtering there - which will help performance

• The event filter can be set to a numeric, boolean or string
XPath expression which will evaluate to boolean true or
false. Typically the result of an a = 'b' or x > 'y' type test

• If the expression evaluates to true then events are emitted

• If the expression evaluates to false then events are not
emitted

• The default setting is true()

30

Configuring: Customizing an event -
Correlation

Use this option when your

events must be correlated

with events from an
external process

31

Correlators

• Each event contains up to three correlation fields

• localTransactionId

• Automatically populated with a unique identifier which will be
the same for all events emitted during a single invocation of
the message flow

• Its value can be set from a field in the message (often from a
header). Once set, later events inherit the same value.

• parentTransactionId and globalTransactionId

• Empty by default.

• Value can be set from a field in the message (often from a
header). Once set, later events inherit the same value.

• Simple scenarios are easy, complex scenarios are

possible.

32

Notes

• If correlator is read from a message header

• Only specify it once

• Usually on the transactionStart event

• Do not copy the XPath/ESQL expression to later event

definitions

• It would work, but would incur a needless performance
penalty

• Correlators are cached in the Environment tree, and later
event sources automatically reuse them if they have been

set.

33

Configuring: Customizing an event -
Transaction

Choose the transaction

under which the event is
emitted

34

Notes:

• What are the different units of work?

• When a message is processed, the MQ updates are

included in a unit of work referred to as the “Message
Flow” unit of work. It is committed if the message

processing is successful and rolled back if it fails

• The “Independent” unit of work is a separate unit of work
which is created and committed regardless of whether the

message is processed successfully or not. Use this for

events, such as those related to error paths, that must be

published even if the flow fails.

• If you don’t want a monitoring event to be included in any

unit of work, choose the “None” option

35

Notes 2:

• Some differences in behaviour depending on the event type:

• Consider the following events generated from a message flow:
• Seq no 1 a transaction start event
• Seq no 2 an event in the message flow unit of work
• Seq no 3 an event in the independent unit of work
• Seq no 4 an event specified as not in a unit of work
• Seq no 5 an event in the message flow unit of work
• Seq no 6 a transaction end or rollback event (see below)
• If the message is successful, all these events, plus seq no 6, a transaction end event,

are published
• If the message fails, events 2 and 5 are rolled back and only events 1, 3, 4 and seq no

6, a transaction rollback event, are published
• Note that as event 4 is published as soon as it is generated, outside of a unit of work, it

will be the first to appear external to Message Broker and is unaffected by any commit or
rollback processing

36

Customizing an event – payload data

Click here to add
data from

headers, payload

or environment

37

Customizing an event – payload data

Click here to add
data from

headers, payload

or environment

38

Payload data

• Multiple XPath queries can be specified

• Or ESQL paths; the support for both is generic

• XPath builder provides assistance with constructing the
path

• Simple fields automatically go into

applicationData/simpleContent

• If monitoring profile is used, the @dataType attribute can

be set for each item of simpleContent. Even if the message

broker tree holds the data as characters, WBM can be
instructed to treat it as integer / date etc

• Complex fields automatically go into

applicationData/complexContent

• Non-XML data from the MRM parser is automatically

converted to XML when included in a monitoring event.

39

Customizing an event – bitstream data

Click here to add

part or all of the

bitstream to the

event

40

Customizing an event – bitstream data

Include headers,

body or entire

bitstream

41

Customizing an event – bitstream data

Encode bitstream

as hexBinary,

base64 or CData

Click here to add

part or all of the

bitstream to the

event

42

Notes

• CData format for bitstream

• Not safe unless you know that the XML is free from invalid

characters

• NB: CData does not protect you from invalid XML characters

• So not usually safe for use with ‘All’

• Because that will include headers which may contain binary
data.

• Recommendation: Use CData encoding with care, and

only with content set to ‘Body’

43

Bitstream data

• Bitstream data for auditing

• Not expected to be used in standard BAM scenarios.

• Events can be captured and written to a database.

• Bitstream data for resubmission

• WMBTM offering can provide capture/repair/resubmit

based on the new monitoring events

• Custom solutions are also possible

44

Generate Monitoring information for
Websphere Business Monitor

• Using an export monitoring information option a user can
use a Generate Monitor Model wizard to create a model
which has automatically created:

• Inbound events for each event source defined in the
message flow

• event parts describing event payload
• filter condition
• correlation expression
• event sequence path expression

• localTransactionId defined as a key

• Additional metrics and KPIs are available by selecting
templates during the Generate Monitor Model wizard

• Log file created in Message Broker message flow project
to show output from generate process

45

Exporting Message Flow monitoring
information

Select Application

Monitoring

Information from the
Business Monitoring

folder

46

Import Monitoring Information into
WebSphere Business Monitor Toolkit

Select Import then Application

monitoring information .zip file

from Business Monitoring folder

47

Generate Monitor Model (multi-step process)

Select message flow to

choose Templates

from Monitoring
Templates page

48

Business Space Manager

Dashboard populated with

data from Message

Broker events

49

Command Line: mqsichangeflowmonitoring

• v6.1.0.2 usage still supported.

• -c to activate monitoring for the specified message flow(s)

• -m to set name of monitoring profile to use for the message

flow(s)

• Extra flags –s and -i

• enable and disable individual event sources in a message

flow

• Multiple event sources can be modified in a single
command invocation

• No need to edit message flow and redeploy

50

Command Line: mqsireportflowmonitoring

• v6.1.0.2 usage still supported.

• Reports whether monitoring is active, and name of monitoring
profile

• Extra –n flag

• report all configured event sources for a single message flow

• Extra –a flag

• report all available event sources in a single message flow

• Extra –x –p <path> flags

• Export the current monitoring properties as a monitoring profile.

• If monitoring profile is in use, registry contents are written to file

• If node properties are in use, XML is constructed from them

• Tip: Use this to easily construct a monitoring profile, rather
than hand-crafting it in a schema editor.

51

Example output from
mqsireportflowmonitoring

Example output from mqsireportflowmonitoring command with –n option

BIP8911I: Monitoring settings for flow 'TotalPurchaseOrderFlow'

in execution group 'EventsEmitter.1' - State?: active, ProfileName: ''.

BIP8912I: Event: 'InputOrder.transaction.Start', Event name: 'InputOrder.Trans

ctionStart', Configured?: yes, State?: enabled

BIP8912I: Event: 'InputOrder.transaction.End', Event name: 'InputOrder.Transac

ionEnd', Configured?: yes, State?: enabled

BIP8912I: Event: 'InputOrder.transaction.Rollback', Event name: 'InputOrder.Tr

nsactionRollback', Configured?: yes, State?: enabled

BIP8912I: Event: 'GoldOrderTotal.terminal.in', Event name: 'GoldOrderTotal.InT

rminal', Configured?: yes, State?: enabled

BIP8912I: Event: 'RegularOrderTotal.terminal.in', Event name: 'RegularOrderTot

l.InTerminal', Configured?: yes, State?: enabled

BIP8071I: Successful command completion.

52

Notes

• Refer back to first screenshot

• mqsireportflowmonitoring with –n option is

equivalent to selecting the message flow canvas.

• Both will list the configured event sources

• mqsireportflowmonitoring with –a option is useful

when you need to discover the event source addresses of

the available event sources.

• So that you can write a monitoring profile which configures
them

• …but there’s a better way

• mqsireportflowmonitoring with –x –p allows you to

avoid hand-crafting the monitoring profile.

53

Diagnosing problems

• Basic diagnosis

• Check that monitoring is active for the message flow itself

• Issue mqsireportflowmonitoring with –n option to see the

list of active event sources.

• Take a user trace, and look for BIP3912 which is logged

every time a message flow emits an event.

54

More information

• Product documentation

• http://publib.boulder.ibm.com/infocenter/wm

bhelp/v6r1m0/topic/com.ibm.etools.mft.doc/a

c37850_.htm

• Sample supplied with Message Broker Toolkit

• End to end scenario with KPIs generated in WBM.

55

Summary

• Message Broker now has built-in support for

Business Activity Monitoring

• Designed for WebSphere Business Monitor / CBE
integration

• Highly configurable

• Can be administered without the toolkit

• Also supports audit, capture/replay scenarios

• V7 support includes

• Tighter integration with WBM

• More features

56

Copyright and Trademarks

© IBM Corporation 2010. All rights reserved. IBM, the
IBM logo, ibm.com and the globe design are
trademarks of International Business Machines
Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is
available on the Web at "Copyright and trademark
information" at www.ibm.com/legal/copytrade.shtml.
Other company, product, or service names may be
trademarks or service marks of others.

